
Dr. Syed Asim Jalal
Department of Computer Science

University of Peshawar

Data Structures and Algorithm Analysis

10

Root of the word Algorithm

 The word Algorithm comes from the name
of the scientist al-Khowarizmi

He wrote a book about algebra and
introduced some some techniques of
mathematics …

2

Algorithm -definition

 Informally, an algorithm is any well-defined
computational procedure that takes some value,
or set of values, as input and produces some
value, or set of values, as output.
 Input can be Numbers, Text, Image, Video, etc

 An algorithm is thus a sequence of
computational steps that transform the input into
the output.

 An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.

3

Design & Analysis of Algorithms 4

Algorithms are Every Where
Operating Systems

 Priorities, scheduling (queues, heaps)
Networks:

 Routing (Trees, graphs), Error
detection/corrections

Multimedia, Image Processing …
Compilers

 Storing data information, optimizations etc
(different data structures, lists etc)

Databases
 Sorting, searching

Design & Analysis of Algorithms 5

What is algorithm analysis ?

 Algorithm analysis has two aspects:
Running time:

 How much time is taken to complete the algorithm
execution?

Storage requirement
 How much memory is required to execute the

program?

 Mostly we’ll deal with the Running times in this course

Why do you need this course ?

A computer scientist must be prepared for tasks like:

” … This is the problem. Solve it ...”

In such a situation it does not suffice to know how to
code?

You must be able to
 find an adequate algorithm or
 develop a new algorithm to solve the problem

6

How can algorithms be described?

There are two basic instruments to describe algorithms:
 Flowcharts:

 graphical description of the flow of processing steps
 at present it is only of historical importance
 however, sometimes are used to describe the overall

structure of an application
 Pseudocode:

 artificial language based on
 vocabulary (set of keywords)
 syntax (set of rules used to construct the language “phrases”)

 “A not so restrictive” as a programming language

7

Design & Analysis of Algorithms 8

Flowchart Symbols

Flow Charts - Example

<condition>

<statement>

Next
statement

False

True

<condition>

<statement>

Next
statement

False
True

Loop

For Loop

9

Pseudocode: Rules

Assignment (operator)
v := <expression>

or v ← <expression>

Expression consists of Operators and Operands
Operands: variables, constant values
Operators: arithmetical, relational, logical
Example: v ← a+b*c

10

Writing Operators in Algorithms

 Arithmetical:
+ (addition), - (subtraction), *(multiplication),
/ (division), ^ (power),
DIV (integer quotient),
MOD (remainder)

 Relational:
= (equal), <> (different),
< (less than), <= (less than or equal),
>(greater than) >= (greater than or equal)

• Logical:
OR (disjunction), AND (conjunction), NOT (negation)

11

Representing Input, Output and Conditional
Statements in algorithms

 READ v1,v2 // Inputs of variables
 WRITE e1,e2 // Output of variables

 IF THEN condition in algorithms
IF <condition>
THEN

statements
 IF THEN ELSE in algorithms

IF <condition>
THEN Statement

ELSE
Statements

12

Loops in Algorithms

Repeat Loop

REPEAT

<statements>

UNTIL <condition>

While Loop
WHILE <condition>
DO

<statements>

13

 Generality
 Finiteness
 Non-ambiguity
 Efficiency

Properties an Algorithm

14

 An algorithm is said to be correct if, for every
input instance, it gives a correct output.
 It means that an algorithm applies to all instances of

input data not only for few particular instances

 Example:
Let’s consider the problem of increasingly ordering a
sequence of values.

(2,1,4,3,5) (1,2,3,4,5)
input data output

Correctness or Generality

15

Method:

Generality:Example

2 1 4 3 5Step 1:

1 2 4 3 5

1 2 4 3 5

1 2 3 4 5

Step 2:

Step 3:

Step 4:

Algorithm:

- compare the first two elements:
if they are not in the desired
order then swap them

- compares the second and the
third element and do the same

…..
- continue until the last two
elements were compared

The sequence has been ordered

16

Generality:Example

 Is this algorithm sufficiently general ?
 Does it assure the ordering of ANY sequence

of values ? NO
Example:

3 2 1 4 5
2 3 1 4 5
2 1 3 4 5
2 1 3 4 5

In this case the algorithm doesn’t work

17

Finiteness
 An algorithm has to terminate, i.e. it should

always stop after a finite number of steps.
Algorithm should have terminate condition or
state.

Example: Generate all odd numbers less than 10

Step1: Assign 1 to x;
Step2: Increase x by 2;
Step3: If x=10 then

STOP;
else

GO TO Step 2

How does this algorithm work ? 18

Finiteness:Example

How does this algorithm work and what does it produce?

Step1: Assign 1 to x;
Step2: Increase x by 2;
Step3: If x=10

then STOP;
else Print x; GO TO Step 2;

x=1

x=3 x=5 x=7 x=9 x=11

The algorithm generates odd numbers but it does not stop.
The above algorithm does not have Finiteness property.

19

Finiteness:Example

The following algorithm has now Finiteness property:

Step1: Assign 1 to x;
Step2: Increase x by 2;
Step3: If x >= 10

then STOP;
else Print x; GO TO Step 2

20

Non-ambiguity

 The operations in an algorithm must be EXPLICITLY
specified. At each step of execution, the next step
has to be very clear.

The following is an example of ambiguous algorithm
Step 1: Set x to value 0
Step 2: Either increment x with 1 or decrement x with 1
Step 3: If x € [-2,2]

GO TO Step 2;
else Stop.

Step 2 is ambiguous and not clear.

21

Non-ambiguity (Example)

Let’s modify the previous algorithm as follows:

Step 1: Set x to value 0
Step 2: Flip a coin
Step 3: IF one obtains tail

THEN increment x with 1
ELSE decrement x with 1

Step 3: If x € [-2,2]
GO TO Step 2,

else
Stop.

 The algorithm can be executed but … different executions can
be different

22

Efficiency

 An algorithm should need a reasonable
amount of computing resources:
 memory and time

 We will study Efficiency in terms of time in
detail.

 Assessing efficiency needs knowledge of
Analysis of Algorithm

23

	Slide Number 1
	Root of the word Algorithm
	Algorithm -definition
	Algorithms are Every Where
	What is algorithm analysis ?
	Why do you need this course ?
	 How can algorithms be described?
	Flowchart Symbols
	Flow Charts - Example
	Pseudocode: Rules
	Writing Operators in Algorithms
	Representing Input, Output and Conditional Statements in algorithms
	Loops in Algorithms
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Generality:Example
	Finiteness
	Finiteness:Example
	Finiteness:Example
	Non-ambiguity
	Non-ambiguity (Example)
	Efficiency

